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Abstract. Previous theoretical work reviewed in [E.B. Alexandrov et al. Interference of atomic states
(Springer, 1993)] has questioned the existence of isotropic quantum beats in atoms. The present work
addresses this issue in dedicated experiments involving a pulsed pump-probe detection scheme. The thus
obtained results show clear evidence of isotropic quantum beats for which a physical interpretation is given
within the coupled-uncoupled state formalism. We suggest that assumptions made in the earlier theoretical
work with respect to the structure of the light field make the predictions applicable to scattering only of
single photons by atoms and not to scattering of the classical-like light pulses used in ordinary experiments.

PACS. 42.50.Ct Quantum description of interaction of light and matter; related experiments – 42.50.Md
Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals,
optical nutation, and self-induced transparency

1 Introduction

The phenomenon of atomic quantum beats is now known
since more than forty years [1,2] and being generalized
to molecules [3] and condensed matter [4] it has found
many applications to study microscopic properties of ordi-
nary matter. In itself, atomic quantum beating represents
a general and fundamental principle of modern physics,
that of interference within an impulsively created coher-
ent superposition of quantum eigenstates. Such superpo-
sition states in atoms may be achieved in various ways,
e.g., by fast collisions in atomic beam-foil experiments [5],
by pulsed electron beam-atom collisions [6] or as con-
sidered here by exposure to short light pulses [1]. The
latter method is today routinely used [7] to create such
diverse entities as quantum wavepackets built-up of elec-
tronic Rydberg states in atoms or rovibrational molecular
states, both kinds suggested as media for quantum com-
puting.

Evidently, then, in addition to the fundamental aspects
important contemporary scientific methods and techno-
logical advances rely on phenomena linked in theory to
quantum beats, in particular atomic ones. Below, we will
briefly restate the standard theoretical formulation of
atomic quantum beats [8], which treats the light-atom
interaction within the electric-dipole approximation and
only takes into account lowest-order interaction.

The standard description has been challenged, how-
ever. In a series of publications [9–11] summarized in ref-
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erence [8] Khvostenko and Chaika (KC) have suggested
that a particular kind of atomic quantum beating (and
level-crossing), that between states with all identical angu-
lar momentum quantum numbers but different principal
quantum numbers, while being allowed in the standard
theory, would be disallowed when higher-order photon-
atom interactions through the vacuum are taken into ac-
count. In reference [12], moreover, the very general claim
is made that “. . . for [atomic] states with all equal an-
gular momenta the signals of level crossing. . . and free
beats. . . are exactly zero at any observation geometry,
i.e., for an arbitrary polarization observed in an arbitrary
direction, provided that irradiation and observation are
carried out in a wide spectral range”. Note that, unlike
the well-known quantum beating effects within Zeeman,
fine, or hyperfine energy level manifolds in atoms [8], the
effect considered by KC is isotropic, that is, it does not
depend on any light polarisation.

It is important to distinguish between the isotropic
electronic quantum beats considered by KC and known
beating (revival) effects related to oscillations in radial
wavepacket motion in atoms and molecules, see refer-
ence [7] for an overall review, which also can be isotropic,
for known reasons. Of particular interest here is the ex-
perimental study on radial Rydberg electron wavepacket
dynamics in calcium atoms by Strehle et al. [13]. For
wavepackets, beating effects can be treated quasiclassi-
cally, in the referred to specific case as a result of period-
ical spatial overlap between the ground and excited state
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wavepackets leading to oscillations in the values of the
corresponding transition probabilities.

Contrary to this quasiclassical behavior of Rydberg
wavepackets, the KC quantum beating effect [8] consid-
ered in this paper is of pure quantum mechanical nature.
It appears between two or more quantum states excited
by a short pulse and represents a basic quantum me-
chanical principle of coherent superposition of quantum
amplitudes. For low-lying excited states such electronic
quantum beats have little similarity with wavepacket mo-
tion. For high-lying states, however, the border between
these two effects is smooth. For instance, some of the
above-mentioned experimental results reported by Strehle
et al. [13] can alternatively be treated in terms of the
coupled-uncoupled state representation (see Sect. 5.2).

To our best knowledge, the KC prediction, henceforth
called the KC conjecture, has not been put to a rigorous
experimental test. This is surprising considering its far-
reaching fundamental and practical implications. In the
present work we address the applicability of the KC con-
jecture with respect to pulsed light excitation, treated
explicitly in references [8,11], in its above-cited general
form [12] by pulsed pump-probe spectroscopy. Our ex-
perimental results display clear quantum beats of purely
radial nature, which shows that the KC conjecture does
not apply under these conditions and, hence, the gen-
eralized version of the conjecture is invalid. We suggest
that this disagreement relates to the assumptions made in
the KC theoretical work with respect to the structure of
the light field. We also offer a physical interpretation of
the observed isotropic quantum beats within the coupled-
uncoupled state formalism.

2 Theoretical preliminaries

For reference we outline in this section the standard for-
mulation of atomic quantum beating theory as applied
to pump-probe detection. Consider an atom initially in
the manifold of its degenerate ground states |g〉 interact-
ing with two pulsed electromagnetic fields Epu and Epr

of duration τ and well-separated in time with a delay
t � τ . The pump pulse couples the atomic ground state
|g〉 to an intermediate electronic excited state manifold
|Ψint〉 whereas the subsequent probe pulse acts on the
|Ψint〉 → |f〉 transition to populate the final state man-
ifold |f〉. For the sake of argument each transition is here
assumed to be a single-photon one.

The general expression for the pump-probe delay time-
dependent signal then can be written

I(t) ∼
∑

f

|〈f |depr |Ψint(t)〉|2 , (1)

where d is the probe transition dipole moment and epr is
the probe light polarization vector.

Choosing t = 0 to coincide with the onset of the pump
pulse and limiting the treatment to delay times much
shorter than the excited state lifetime we have

|Ψint(t)〉 =
∑

j

aj(τ)e−iĤa(t−τ)/� |j〉 , (2)

where Ĥa is the atomic Hamiltonian in the absence of ra-
diation and the coefficients aj(τ) describe excitation of the
atom from the ground to the intermediate state and can
be determined by usual first order perturbation theory.

In the simplest case of a spinless atom the interme-
diate state eigenvectors |j〉 = |njLjMj〉 where nj is the
main quantum number, Lj the total electronic angular
momentum, and Mj the projection of Lj onto the labora-
tory Z-axis. Similarly, for the initial |g〉 and final state |f〉
we have |ngLgMg〉 and |nfLfMf 〉. The Hamiltonian Ĥa in
equation (2) is diagonal in this representation. Assuming
equal population of each Mg ground state magnetic sub-
level and noting that from the conditions above t − τ ≈ t
the pump-probe signal in equation (1) can be rewritten in
the general form

I(t) ∝
∑

f,g

∣∣∣∣∣∣

∑

j

〈f |de∗pr |j〉 e−
i
�

Ejt 〈j|depu |g〉
∣∣∣∣∣∣

2

. (3)

Here, Ej is the energy of the jth intermediate state
whereas epu and epr is the polarization of the pump and
probe photon, respectively. The summation proceeds over
all initial, intermediate, and final states involved in the
pump-probe process. This generally rather complicated
formula contains both time-independent incoherent terms
with j = j′ and time-dependent coherent terms with
j �= j′, the latter ones being responsible for the quantum
beating phenomenon. Assuming there is only one initial
|ng, Lg〉 state and one final |nf , Lf〉 state involved and
using the Wigner-Eckart theorem [14], equation (3) after
summation over all projections Mg, Mj , M

′
j, and Mf be-

comes

I(t) = C
∑

K

∑

nj ,n′
j

∑

Lj ,L′
j

(−1)K+Lg+Lf+Lj+L′
j

× (EK(epu) · EK(epr))

×
{

Lj L′
j K

1 1 Lg

}{
Lj L′

j K
1 1 Lf

}
e−iωjj′ t

× 〈nfLf‖d‖njLj〉∗〈nfLf‖d‖n′
jL

′
j〉

× 〈njLj‖d‖ngLg〉∗〈n′
jL

′
j‖d‖ngLg〉. (4)

The terms within angular braces are reduced dipole mo-
ment matrix elements whereas curly braces denote 6j sym-
bols. C is a constant and EK(epu) · EK(epr) is the scalar
product of the irreducible tensors of the pump and probe
light polarizations [15]. Defining the pump light polariza-
tion to coincide with the laboratory Z-axis and using ex-
plicit expressions for the zeroth and the second rank light
polarization irreducible tensor from reference [8] one can
show that E0(epu) ·E0(epr) = 1/3 and E2(epu) ·E2(epr) ∝
P2(cosΘ), where P2(cosΘ) is the second-order Legendre
polynomial and Θ is the angle between the pump and the
probe polarization vectors.

Note that quantum beats are frequently studied not by
detecting absorption of the probe light beam as above, but
by detecting polarization of the fluorescence light emitted
from intermediate states. The fluorescence signal can still
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be successfully described by equation (4), however, with
additional phenomenological terms e−Γjt where Γj is the
radiative lifetime of the |j〉 state [3,8].

The index K in equation (4) is limited to the values
{0, 1, 2} which describe contributions to the absorption
signal from the atomic population, orientation, and align-
ment, respectively. The contribution from the K = 1 term
vanishes if the pump and the probe laser pulses are both
linearly polarized. The K = 0 term is isotropic as it does
not depend on the polarization of the pump and probe ra-
diation but solely on the total number of atoms in the |j〉
manifold. The non-zero K terms, on the other hand, are
anisotropic as they depend on Θ. These terms originate in
the spatial anisotropy of the atomic angular momenta Lj

and L′
j .

The value ωjj′ = (Ej−E′
j)/� in equation (4) is the dif-

ference between frequencies of the intermediate quantum
states and the corresponding time-dependent exponent is
the origin of the quantum beats. It is easy to show from
the symmetry properties of the 6j symbols in equation (4)
that in case Lj �= L′

j the value of K must differ from zero.
Therefore, no isotropic quantum beats can exist in this
case. This result can be generalized for more complicated
atomic wave functions taking into account spin-orbit and
hyperfine interactions and containing the set of quantum
numbers nj , Lj, S (electron spin), Jj (total electron an-
gular momentum), I (nuclear spin), and Fj (total angular
momentum). It can be shown (see, e.g., Ref. [8]) that if
Lj �= L′

j , or Jj �= J ′
j , or Fj �= F ′

j , then no isotropic quan-
tum beats can exist.

If instead Lj = L′
j but nj �= n′

j, equation (4) predicts
non-zero time-dependent contribution from the K = 0
term leading to isotropic quantum beating where the beat
amplitude does not depend on the pump and probe light
polarization. As far as we know, no experimental observa-
tion of this effect has been reported until now. The pre-
diction may look surprising, because in the general case of
two arbitrary quantum states this kind of beats might re-
sult only from oscillation of the excited state total atomic
concentration [11]. Khvostenko and Chaika [9–11] there-
fore argued that equation (4) based on the first order per-
turbation theory is not sufficient in case Lj = L′

j and
nj �= n′

j and that taking into account higher orders of the
perturbation series cancels the isotropic quantum beating.

3 Experimental

3.1 Pump-probe scheme

The atomic system employed for the experiments is
the spectroscopically well-studied [16,17], nonetheleast by
pulsed pump-probe spectroscopy [13], 40Ca atom. It has
a non-degenerate 1S0 ground state and lacks nuclear spin
which ensures both the absence of perturbing hyperfine in-
teraction and that the superposition state is not obscured
by statistical averaging over initial quantum states related
to angular momentum projections.

As described just below, the pump pulse excited lev-
els with n ≈ 15 in a two-photon transition. Depending
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Fig. 1. Pump-probe scheme. Top: circular light polarization;
Bottom: linear polarization.

on light polarization, then, there was one or two of the
(4sns) 1S0 and (4snd) 1D2 manifolds with mJ = 0 or 2
addressed at a time. The 1S0 manifold appears to be un-
perturbed in the applicable n range while some 1D2 states,
most notably 4s13d, are perturbed by spin-orbit interac-
tions [16].

Figure 1 illustrates our pump-probe scheme. It was
for all purposes advantageous to address as low-lying as
possible atomic levels in the excited superposition state.
The lower n limit is determined by the spectral band-
width of the employed light pulses, in our case 120 and
150 cm−1, respectively, corresponding to n ≈ 15, if only a
small number of states is to be excited. In calcium, how-
ever, these levels are inconveniently high in energy for a
one-photon excitation scheme. We therefore used instead
a non-resonant two-photon pump transition at 411 nm.

A circularly polarized σ± pump pulse, Figure 1 (top),
thus addressed only mJ = ±2 states in the (4snd) 1D2

manifold. With linear light polarization, on the other
hand, mJ = 0 states in both the (4sns) 1S0 and (4snd) 1D2

manifolds were accessed, Figure 1 (bottom). In either
case, the time evolution of the pumped state was mapped
out by a time-delayed probe pulse that stimulated a
downward transition to the (4s5p) 1Po

1 level, a process
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which was monitored by detecting, to avoid contribution
from cascade processes, early fluorescence intensity of the
(4s5p) 1Po

1 → (4s3d) 1D2 line. For σ± polarized pump
light, a σ∓ probe was used, resulting in an overall scheme
that below is denoted [σ+]2σ− or, vice versa, [σ−]2σ+

whereas for a π polarized pump the probe was π polar-
ized either parallel (π2 ‖ π) or perpendicular (π2 ⊥ π) to
the pump.

The theoretical expressions in the previous section
were derived for a 1+1 type pump-probe scheme and hence
cannot be directly used for our 2 + 1 scheme. The general
equations (1) and (2) are still valid, however, where the
coefficients aj(τ) now describe two-photon excitation from
the atomic ground state and can be calculated by standard
second order time-dependent perturbation theory. Intro-
ducing virtual atomic states |v〉 and summing over the
projections of all angular momenta the expression for the
light absorption intensity I(t) after some simplifications
becomes

I(t) = C
∑

k1,k2,k3

(−1)k2+k3
√

(2k2 + 1)(2k3 + 1)Sk1k2
k3

(t)

× {
[Ek1(e1)

⊗
Ek2(e2)]k3

· Ek3(e3)
}

. (5)

Here kj = 0, 1, 2 (j = 1, 2, 3) are ranks of the first, second,
and the third photon polarization tensor, respectively, and
the third photon is assumed to be the probe one. The
product within curly brackets in equation (5) is

[Ek1(e1)
⊗

Ek2(e2)]k3 · Ek3(e3) =
∑

α,β,γ

(−1)γCk3 −γ
k1 α k2 β

× Ek1,α(e1)Ek2,β(e2)Ek3,γ(e3), (6)

where Ck3 −γ
k1 α k2 β is a Clebsch-Gordan coefficient [14] and

Sk1k2
k3

(t) =
∑

Lj,L′
j

∑

Lv,L′
v

∑

nv ,n′
v

∑

nj ,n′
j

(−1)Lg+L′
j+L′

v+Lf+1

×
{

1 1 k3

L′
j Lj Lf

}{
1 1 k1

L′
v Lv Lg

}

×





Lv 1 Lj

L′
v 1 L′

j

k1 k2 k3




 e−iωjj′ t

× S(ngLg, nvLv, n
′
vL′

v, njLj , n
′
jL

′
j , nfLf).

(7)

The factor S(ngLg, nvLv, n
′
vL′

v, njLj , n
′
jL

′
j , nfLf) con-

tains reduced matrix elements and the energy denomina-
tor of second order perturbation theory:

S(γgjg, γvjv, γ′
vj

′
v, γjjj , γ

′
jj

′
j , γf jf ) =

〈nfLf‖d(3)‖n′
jL

′
j〉〈nfLf‖d(3)‖njLj〉∗

× {(Egv − hν − iΓv/2)(Ev′g − hν + iΓv/2)}−1

× 〈n′
jL

′
j‖d(2)‖nvLv〉〈njLj‖d(2)‖nvLv〉∗

× 〈n′
vL

′
v‖d(1)‖ngLg〉〈nvLv‖d(1)‖ngLg〉∗. (8)

Although the expression for the quantum beating in equa-
tion (5) is more complicated than that in equation (4)
it retains the same main features of the phenomenon.
This can be clearly seen assuming the polarization of the
pump light e1 = e2 = epu is parallel to the laboratory
Z-axis, which restricts the values of all the projections α,
β, and γ in equation (6) to zero. The contribution from
all k3 = 0 terms in equation (5) describes the isotropic
quantum beats as the product (6) does not depend on the
relative direction of the epu and the e3 = epr polariza-
tion vectors. The anisotropic quantum beats, on the other
hand, are described by the k3 = 2 terms which do de-
pend on the relative polarization of the pump and probe
light as

{
[Ek1(epu) ⊗

Ek2(epu)]k3
· E2(epr)

}
∝ P2(cos Θ).

Also, as can be seen from the symmetry properties of the
6j symbol in equation (7), in case Lj �= L′

j all k3 = 0 terms
vanish and thus only the anisotropic quantum beats can
exist. If Lj = L′

j both isotropic (k3 = 0) and anisotropic
(k3 = 2) quantum beats can exist. Thus, the 2+1 quantum
beating signal in equation (5) exhibits the same features
as the 1 + 1 signal in equation (4).

3.2 Set-up

In brief, the experimental set-up comprised a femtosecond
laser system in a standard pump-probe configuration with
polarization control coupled to a heat-pipe oven for sample
generation. Fluorescence light emitted from the oven was
spectrally decomposed and detected by time-gated photon
counting, a procedure that was repeated for a range of
pump-probe delays.

The required ultrashort pump and probe pulses at
about 411 and 835 nm, respectively, were generated in sev-
eral steps. The output pulse of a femtosecond laser system
(CPA2001, Clark-MXR) was split in two and used to syn-
chronously pump two identical optical parametric ampli-
fiers (TOPAS-4, Light Conversion). The pump pulse was
generated by nonlinear mixing in BBO crystals to obtain
the third harmonic of the TOPAS’ signal pulse. The probe
pulse was obtained similarly by frequency doubling of the
idler pulse and its timing with respect to the pump pulse
was controlled by a mechanical delay stage with 1 µm path
length resolution.

The final light pulses had bandwidths of 120 (pump)
and 150 cm−1 (probe) and the overall time-resolution af-
ter pulse compression was characterized by a Gaussian
cross-correlation width of about 150 fs in a SiC pho-
todiode (JEC1, Laser Components) [18] just before the
oven entrance window. The pulse fluence of the pump and
probe thus obtained was at the oven 2−5 µJ. The polariza-
tion state of the pulses was always purer than 100:1 and
could be controlled by various waveplate combinations.
With linear pulse polarization a broadband λ/2 waveplate
(ACWD-400-700-10-2, CVI) was inserted into the pump
beam. Circularly polarized pulses were obtained by insert-
ing a variable Berek compensator (5540, New Focus) in
each beam. Finally, the pulses were focused by f = +50 cm
plano-convex lenses and the focii were spatially overlapped
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in the center of the heat-pipe oven after entering through
a 3.0 mm BK7 window (Melles Griot).

The gaseous calcium atom sample was generated by
putting grains of the metal (natural isotope mixture)
in the center of a ceramic heat-pipe oven and heating
to around 550 ◦C in the presence of 0.1 mbar of argon
buffer gas. The buffer pressure was balanced such as to
maximize the detected fluorescence intensity, which in-
creases with pressure, while avoiding substantial dephas-
ing of the atomic superpositions within the timescale of
the experiment. Thus, the applied buffer gas pressure
was significantly lower than the in the order of 10 mbar
used in standard applications, at which pressures we saw
clear quenching of the atomic beats. The oven was resis-
tively AC heated through a 0.75 mm diameter wolfram
wire singly wound around the ∅ 3 cm cylindrical oven. A
50 Hz current of 16 A was required to maintain the oper-
ation temperature.

Fluorescence light from the sample was collected in
the backward direction with a f = +30 cm lens close to
the short-pulse entrance window. This light was spectrally
(OG 570, Schott) and spatially filtered and imaged onto
a 20 cm monochromator (H 20 IR, Jobin-Yvon) set at
672.5 nm with a FWHM bandpass of 4 nm to monitor the
(4s5p) 1Po

1 → (4s3d) 1D2 transition. The detection was ef-
fected by a photomultiplier tube (R928, Hamamatsu) op-
erated in photon counting mode and connected to a gated
photon counter (SR400, Stanford Research). A time gate
was applied to discriminate against background photons
from cascade processes by utilising the fact that the cas-
cade process is much slower than the decay of the pop-
ulation induced by the probe pulse. Thus, the gate was
delayed about 10 ns with respect to the arrival of the
pump pulse to avoid scattered pump light and then set
to cover the following 80 ns of the transient fluorescence
light. For each pump-probe delay the signal was summed
over 2000 laser cycles. A similar set-up was used to simul-
taneously record the excited atomic density in the oven
by collecting fluorescence light in the forward direction
and setting the monochromator to monitor mainly the
(4s15s−4s18s) 1S0 and (4s14d−4s18d) 1D2 to (4s4p) 1Po

1

transitions at around 390 nm.

4 Results

The primary data from the experiments were pump-probe
delay time traces. In these, zero delay time corresponds
to pump and probe pulses arriving simultaneously to the
sample, while negative time means the probe pulse ar-
rives prior to the pump. In the latter case we recorded
only background counts without noticeable pump-probe
contribution.

Interpretation of the data is most easily done in the
frequency domain and the power spectrum of each trace,
defined as the absolute square of the corresponding fast
Fourier transform, is given. The notation of the peak as-
signments in these graphs are of the form nx-my which
denotes a beat frequency corresponding to the energy dif-
ference between the 4snx and 4smy levels. In the assign-
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Fig. 2. Time trace obtained with the [σ+]2σ− scheme and
λpu = 410 nm and λpr = 833 nm.

0 25 50 75 100 125

Frequency (cm−1)

P
ow

er
 (a

rb
. u

ni
ts

)

16
d 

−
17

d

15
d 

−
16

d

Fig. 3. Power spectrum of the [σ+]2σ− trace in Figure 2.

ment procedure we have in view of its vanishing intensity
in the two-photon excitation spectrum [16] excluded the
possibility of any combinations involving the 4s13d level.
It should be noted that we to obtain the power spectra
only include positive delay times corresponding to well-
separated pulses and subtract a constant background to
have a signal oscillating around approximately zero level.

4.1 Circular light polarization

Figure 2 displays a time trace obtained with the [σ+]2σ−
pump-probe scheme. Its outstanding feature is the seem-
ingly simple quantum beat structure. This simplicity is
obvious in the corresponding power spectrum in Figure 3
which exhibits only two significant peaks. Importantly,
these peaks correspond to beat frequencies involving only
4snd levels, that is, they are of pure d-d type.

Two more traits of the time trace deserving mentioning
are the sharp strong peak at around zero time delay and
the slow overall decay of the signal level.
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Fig. 4. Time trace obtained with the π2 ‖ π scheme and
λpu = 411 nm and λpr = 837 nm.
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Fig. 5. Power spectrum of the π2 ‖π trace in Figure 4.

A strong t = 0 peak is found with all pump-probe
schemes. Likely, it arises from a collection of complicated
light-matter interactions when the two pulses overlap in
time and dies away as the pulses separate similarly to
the in ultrafast spectroscopy often-called coherent arte-
fact [19]. The extension of this coherent spike demarcates
a region in which our theoretical expressions above do not
hold.

Finally, weak decay of the overall signal intensity, in
this case with a time constant in the order of 10 ps, is to
varying extent observed in all traces. It is most likely due
to atomic decoherence induced by residual collisions with
the buffer gas.

4.2 Linear light polarization

Clearly, the π2π scheme should be expected to produce
more complicated superposition states than the one in-
volving circular light polarization. The quantum beat
structures in Figures 4 and 6 indeed look more involved
than the previous one. This is also reflected in the re-
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Fig. 6. Time trace obtained with the π2 ⊥ π scheme and
λpu = 411 nm and λpr = 837 nm.
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Fig. 7. Power spectrum of the π2⊥π trace in Figure 6.

spective power spectra in Figures 5 and 7 displaying a
multitude of beats of three different kinds — s-s, d-d, and
s-d.

The variation in amplitudes of the frequency peaks
in the parallel and perpendicular polarisation schemes re-
flects the rank of the corresponding beat term in equa-
tion (7) and may thus be used to extract information on
the symmetry of each frequency component. Most notably,
as done below, the isotropic and anisotropic contributions
to the signal can be separated from each other.

5 Discussion

We wish here to assess the validity of the KC conjecture
with respect to pulsed pump-probe spectroscopy. The con-
jecture concerns the existence of isotropic pure n-manifold
quantum beats and we proceed by first evidencing the ex-
istence of precisely such beats in our measured signal. Sec-
ondly, we present a physical interpretation of these quan-
tum beats within the coupled-uncoupled state formalism.
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5.1 Analysis – existence of isotropic quantum beats

Generally spoken, our spectra reflect truthfully the cal-
cium energy level structure [16] in that the observed beat
frequencies correspond to essentially all relevant combina-
tions of levels. The noteworthy exception to this is that
peaks involving the 4s13d and 4s14d levels are consistently
weaker than the other ones, in the former instance to the
extent that they are unobservable. This presumably is a
consequence of spin-orbit perturbation of these levels [16].

The existence of pure n-manifold quantum beats, in
our case beats of s-s and d-d type, is most directly
addressed by the [σ+]2σ− scheme. Requiring mJ = 2
in the intermediate state, it allows excitation of only
the (4snd) 1D2 manifold which implies that all states |j〉
have identical angular momentum quantum numbers. Ev-
idently, from Figures 2 and 3 there are beats present in
this case and they are indeed only of the d-d kind. Fur-
ther evidence for the existence of pure n-manifold beats
are found by inspection of the spectra obtained with the
π2π scheme. Both Figures 5 and 7 contain in addition to
d-d beats also s-s beat frequencies.

A characteristic feature of pure n-manifold beats, as
argued above, is that they should be isotropic. That is,
in the π2π scheme their amplitude should not depend on
the relative orientations of the pump and probe polariza-
tions. All other kinds of beats would be anisotropic. The
two symmetry classified contributions to our signal can be
separated by the standard formula for light anisotropy [15]

R(t) =
I‖(t) − I⊥(t)
I‖(t) + 2I⊥(t)

, (9)

where I‖(t) and I⊥(t) is the signal obtained with the π2 ‖π

and π2 ⊥ π scheme, respectively. It is readily found that
R(t) contains contributions from only the k3 = 2 terms in
equation (5) whereas the denominator is isotropic, that is,
it corresponds to the k3 = 0 part.

The anisotropy power spectrum obtained from R(t) is
shown in Figure 8. Note that within experimental uncer-
tainty only mixed s-d type of beats and no s-s or d-d beats
are seen. The latter beats reappear, however, in the spec-
trum of the isotropic part (not shown) in which there are
no s-d frequencies present. We conclude that the observed
pure n-manifold quantum beats indeed are isotropic, in
compliance with equation (5).

5.2 Interpretation – coupled-uncoupled state
representation of quantum beats

Our experimental results thus showed clear evidence of
isotropic quantum beating. By inference, the correspond-
ing zero rank terms in equations (4) and (5) describing
pump-probe signals cannot denote simply the population
number of excited atoms as frequently interpreted [8]. We
formulate here a more adequate physical interpretation
within the coupled-uncoupled quantum states formalism
recently investigated in connection with coherent popu-
lation trapping [20,21] and quantum beating in atomic
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Fig. 8. Power spectrum of R(t) formed from the traces in
Figures 4 and 6. Arrows mark expected positions of s-s and
d-d beats from Figures 5 and 7.

photoionisation [22]. This formalism is a non-perturbative
one, that is, it does not contain the perturbation theory
expressions describing interaction of atoms with radiation
like in equation (3).

Considering excitation of atoms from the ground to the
excited states in the pump-probe experiment we will for
clarity restrict ourselves to one-photon transitions. For t ≥
τ the total time-dependent atomic wavefunction |Ψ(t)〉 can
in general be expanded over the time-independent basis as

|Ψ(t)〉 =
∑

k

ak(t) |k〉 , (10)

where ak(t) is a probability amplitude and the index k
runs over all quantum states involved in the process. De-
scribing interaction of the atom with the pump and probe
pulses separately, we consider the simplest case of a four-
level atom with one ground |g〉, two intermediate |1〉, |2〉,
and one final |f〉 quantum state. The external electromag-
netic field will be treated classically. The amplitudes ak(t)
are subject to the Schrödinger equation which in the ro-
tating wave approximation for the pump process can be
written

i
∂

∂t
ag = ωgag − 1

�
E∗

puτpu δ(t − t0)
2∑

j=1

〈g|de∗pu |j〉 aj ,

i
∂

∂t
aj = ωjaj − 1

�
Epuτpu δ(t − t0)

× 〈j|depu |g〉ag, j = 1, 2. (11)

where Epu is the pump field amplitude, τpu is a pump
pulse duration, and the δ-function δ(t− t0) represents the
pump pulse at time t0. The frequencies ω1, ω2, and ωg are
atomic level frequencies, ωk = Ek/�. Similar equations
can be written for the probe process.

When the pump pulse duration is much smaller than
the inverse frequency separation between the intermediate
states |1〉 and |2〉, τpu � ω−1

12 , the frequencies ω1 and ω2 in
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equation (11) can be taken equal to each other. It then can
be shown from equation (11) that the pumping field can
couple the ground state only to a particular superposition
of the excited states

|c pu〉 = D−1
pu

(
|1〉 〈1|depu |g〉 + |2〉 〈2|depu |g〉

)
(12)

where Dpu =
(∑2

j=1 | 〈g|de∗pu |j〉 |2
)1/2

is a normalization
factor. The corresponding probability amplitude is

ac pu = D−1
pu

(
〈g|de∗pu |1〉a1 + 〈g|de∗pu |2〉 a2

)
. (13)

The orthogonal superposition state |nc pu〉 and the corre-
sponding probability amplitude anc pu can be found as

|nc pu〉 = D−1
pu

(
− |1〉 〈g|de∗pu |2〉 + |2〉 〈g|de∗pu |1〉

)
(14)

anc pu = D−1
pu

(
− 〈2|depu |g〉 a1 + 〈1|depu |g〉 a2

)
. (15)

This state remains uncoupled with the ground state and
acquires no population during the pumping pulse.

Coupled and uncoupled states with respect to the
probe pulse |c pr〉, |nc pr〉 can be defined in a similar way.

Transformation from the basis |j〉 = |1〉 , |2〉 to the ba-
sis |c 〉, |nc 〉 according to equations (12) and (14) is unitary
thus leading to equivalent expressions for the signal. This
transformation greatly simplifies the system of three cou-
pled equations in equation (11) reducing it to a system of
two coupled equations for the amplitudes ag and ac pu

i
∂

∂t
ag = ωgag − 1

�
DpuE∗

puτpu δ(t − t0) ,

i
∂

∂t
ac pu = ω1ac pu − 1

�
DpuEpuτpu δ(t − t0) ag (16)

and one decoupled equation for anc pu

i
∂

∂t
anc pu = ω1anc pu (17)

which easily can be solved analytically.
In the absence of the laser radiation the atomic sys-

tem evolves according to the purely atomic Hamiltonian
Ĥa as shown in equation (2) with the |j〉 = |1〉 and |2〉
eigenstates. The explicit set of equations for this case is

i
∂

∂t
ag = 0,

i
∂

∂t
a1 = ω1a1, i

∂

∂t
a2 = ω2a2. (18)

Note that in the latter equation we make distinction be-
tween ω1 and ω2, since, unlike the pulse duration τ , the
time interval t between the pump and probe pulses is com-
parable to or larger than ω−1

21 .
Consecutively solving equations (16) and (18) together

with the similar set of equations for the probe laser pulse,

the expression for the pump-and-probe signal finally be-
comes

I(t) ∼
∣∣∣∣∣(DpuDpr)−1

2∑

j=1

〈f |de∗pr |j〉 〈j|depu |g〉

+ 2 Re
(〈f |de∗pr |2〉 〈1|depu |g〉 eiω21t

)
∣∣∣∣∣

2

(19)

where epr and Dpr is the probe pulse polarization vector
and the corresponding dipole matrix element, respectively.

The interference term in equation (19) displays beating
at the frequency ω21. These beats are definitely isotropic
because no angular momenta of the atom were introduced
into our simple four-level model. Moreover, they have clear
physical meaning, as the excited state population oscil-
lates between the coupled and uncoupled states defined
with respect to the probe pulse.

In fact, equation (19) corresponds to the K = 0 term
in equation (4). The equation can be easily generalized,
however, to the case of degenerate quantum states |nLM〉.
Consideration of more than two intermediate states |j〉
leads only to an increase in the number of coupled-
uncoupled states, while for every pulse, pump or probe,
these states can be defined in the same way. As a result
the generalized equation (19) becomes equivalent to equa-
tion (4). Thus, the advantage of using the coupled and
uncoupled basis states is just the clarity of physical pic-
ture. Note, however, the interpretation presented here is
not a perturbative approach that drops higher-order con-
tributions. Thus, the occurrence of isotropic beats in the
theoretical signal cannot be associated with an incorrect
series truncation, as inferred by the KC conjecture [9–11].

It should be noted that if the pulse duration is com-
parable to the inverse frequency separation between the
excited states |j〉, but small compared to the natural life-
times of the excited states, the coupled and uncoupled
states formalism still can be used. In such a case, these
states must be defined with respect to the S-matrix de-
scribing evolution of an atom under the action of an elec-
tromagnetic radiation pulse of finite duration.

As shown above, our experimental results and their
theoretical interpretation do not support the general
KC conjecture [12] — that is, we do observe in pump-
probe experiments quantum beats between states differ-
ing only in principal quantum number and, moreover, the
beats can be explained by a non-perturbative, coupled-
uncoupled states model. Careful analysis of the arguments
of Khvostenko et al. in references [8–11], however, shows
that the theory as developed there pertains only to a
single photon scattering by an atom, the results mean-
ing that the total cross-section of a photon scattering
event displays no net interference of paths via various ex-
cited levels having the same angular quantum numbers
and different principal quantum numbers. As known from
quantum electrodynamics (see, e.g., the monograph [23]),
the radiation field states with definite photon numbers
(Fock states) considered by KC have indefinite phase
value and do not reflect the properties of the classical
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electromagnetic field generated by lasers. The latter field
can be modelled only by photons in coherent quantum
states with large mean photon numbers.

The formalism of coupled and uncoupled states used
in this paper, on the other hand, is applicable only to the
case of irradiation of an atom by classical electromagnetic
fields [20] and is not appropriate for treating of photon
Fock states.

Therefore, as our experimental results and theoretical
interpretation are obtained for classical electromagnetic
fields they are strictly speaking not in contradiction with
the result of the theory developed by Khvostenko and co-
workers in references [8–11]. The properties of the nonclas-
sical photon states are so far rather scarcely investigated
experimentally and direct verification of the results of the
KC theory using single mode photon Fock states would be
of great interest.

6 Conclusion

Summing up, our experiments show clear evidence of
isotropic quantum beating generated by atomic states
with all angular momenta and their projections equal.
The theoretical analysis explains the experimental result
within the coupled-uncoupled states picture and shows
that the standard formula (3) is valid for all possible val-
ues of L and L′, contrary to the prediction of the general
KC conjecture. Our results are strictly valid for a pump-
probe detection scheme and for classical electromagnetic
fields.

In a forthcoming publication we intend to report on
studies of isotropic quantum beating induced by a short
light pulse and detected by time-resolved fluorescence.

This work was supported by the RFBR grant No. 02-
03-32914, RFBR grant No. 02-02-17686, Russian Leading
Scientific Schools 1115.2003.2, and the Swedish Research
Council (VR).
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